
Accepted Manuscript

Design and implementation of the secure compiler and virtual machine
for developing secure IoT services

YangSun Lee, Junho Jeong, Yunsik Son

PII: S0167-739X(16)30058-9
DOI: http://dx.doi.org/10.1016/j.future.2016.03.014
Reference: FUTURE 2988

To appear in: Future Generation Computer Systems

Received date: 15 October 2015
Revised date: 24 February 2016
Accepted date: 23 March 2016

Please cite this article as: Y. Lee, J. Jeong, Y. Son, Design and implementation of the secure
compiler and virtual machine for developing secure IoT services, Future Generation Computer
Systems (2016), http://dx.doi.org/10.1016/j.future.2016.03.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2016.03.014

Design and Implementation of the Secure Compiler and
Virtual Machine for Developing Secure IoT Services

YangSun Lee*, Junho Jeong**, Yunsik Son**, ***
*Dept. of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, KOREA
yslee@skuniv.ac.kr

**Dept. of Computer Engineering, Dongguk University
26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, KOREA

yanyenli@dongguk.edu, Corresponding Author: sonbug@dongguk.edu
***Department of Brain and Cognitive Engineering, Korea University,

145 Anam-ro, Seongbuk-ku, Seoul 136-713, KOREA
Corresponding Author: sonbug@korea.ac.kr

Abstract. Recent years have seen the development of computing environments
for IoT (Internet of Things) services, which exchange large amounts of
information using various heterogeneous devices that are always connected to
networks. Since the data communication and services occur on a variety of
devices, which not only include traditional computing environments and mobile
devices such as smartphones, but also household appliances, embedded devices,
and sensor nodes, the security requirements are becoming increasingly important
at this point in time. Already, in the case of mobile applications, security has
emerged as a new issue, as the dissemination and use of mobile applications have
been rapidly expanding. This software, including IoT services and mobile
applications, are continuously exposed to malicious attacks by hackers, because
it exchanges data in the open Internet environment. The security weaknesses of
this software are the direct cause of software breaches causing serious economic
loss. In recent years, the awareness that developing secure software is
intrinsically the most effective way to eliminate the software vulnerability, rather
than strengthening the security system of the external environment, has increased.
Therefore, methodology based on the use of secure coding rules and checking
tools is attracting attention to prevent software breaches in the coding stage to
eliminate the above vulnerabilities. This paper proposes a compiler and a virtual
machine with secure software concepts for developing secure and trustworthy
services for IoT environments. By using a compiler and virtual machine, we
approach the problem in two stages: a prevention stage, in which the secure
compiler removes the security weaknesses from the source code during the
application development phase, and a monitoring stage, in which the secure
virtual machine monitors abnormal behavior such as buffer overflow attacks or
untrusted input data handling while applications are running.
Keywords: Secure Software, IoT Services, S/W Weakness, Program Analysis,
Compiler Construction, Virtual Machine

*Manuscript
Click here to view linked References

1 Introduction
Recently, the expansion of computing environments to the IoT (Internet of Things),

and mobile and cloud computing have resulted in privacy and system security issues
becoming more important. Especially, the software included in mobile applications will
always be vulnerable to possible malicious attacks by hackers, because it exchanges
data in the Internet environment. These security weaknesses are the direct cause of
software breaches, thereby causing serious economic loss. Moreover, in recent years
the computing environment has been changing into a complicated system composed of
various and heterogeneous sensors, IoT/embedded devices, mobile devices, PCs, and
servers from the traditional environments.

In this environment everything is connected; hence, it is difficult to apply
conventional application development methods and execution environments to this
complicated system. Thus, IoT services are vulnerable to serious security problems
such as hacking and exploiting, because almost all the devices of IoT systems are
connected to the Internet and transmit data over the network. IoT sensors or devices are
more exposed to relatively serious security threats compared to a traditional server
system inside a firewall or IDS (Intrusion Detection System). When such terminal
devices are under external attack, the entire IoT-based services are unable to operate
normally because of the abnormal behavior.

In this regard, offering a secure coding guide or static analysis tools to solve software
weaknesses from the coding stage is a trend, nowadays. If weaknesses are considered
and prevented from the software development stage, enormous cost can be cut,
compared to the efforts to recognize and correct weaknesses in the operation stage, and
also huge contribution can be made to the development of safe software from hackers
[1, 2].

Our research team is working to solve this problem with the aim of producing high-
quality/trustworthy IoT services by developing technology for IoT secure software
development and execution based on a compiler and virtual machine. In this paper, we
propose the use of a secure compiler and virtual machine with a stack monitoring
method to develop secure IoT applications and protect abnormal behavior in computing
environments containing various IoT devices.

A secure compiler was designed for preventing software weaknesses in the source
code during the application development phase, and it is combined with a traditional
compiler and weakness analyzer to generate the target code and remove the weaknesses.
The secure compiler is implemented in conjunction with a virtual machine, which
monitors abnormal behavior such as buffer overflow attacks or untrusted input data
handling to protect the system while the applications are running.

The contents of this paper are as follows. First, in chapter 2, secure coding, weakness
analysis tools, and a smart cross platform are examined. Next, in chapter 3, the
technique proposed in this paper is introduced. In chapter 4, the results obtained by
applying the proposed method are analyzed and evaluated. Lastly, in chapter 5, the
conclusion and future direction of research are discussed.

2 Related Studies
2.1 Secure Coding

The software of today exchanges data in the Internet environment, thereby making
it difficult to secure the validity of the data input and output. The possibility of being
maliciously attacked by unknown and random invaders exists. This weakness has been
the direct cause of software security incidents, which generate significant economic
losses or social problems [1].

Security systems, installed to prevent security incidents from occurring, mostly
consist of firewalls, user authentication systems, etc. However, according to a Gartner
report [2], 75% of software security incidents occur because of weaknesses in the
application programs. Therefore, rather than strengthening the security systems for the
external environment, the creation of more secure software code by programmers is a
more fundamental and effective method of increasing the security levels. However,
efforts to reduce the weaknesses of a computer system are still mainly biased to network
servers.

Recently, there has been recognition of this problem and therefore research on secure
coding, that is, writing secure codes from the development stage [3][4] onwards, is
being carried out actively. Especially, CWE (Common Weakness Enumeration) [5], an
organization that analyzes the weaknesses that can arise from programming language,
has analyzed and specified the various weaknesses that can occur in the source code
creation stage of different languages. Also, CERT (Computer Emergency Response
Team)[6] has defined secure coding rules to ensure secure source code creation. In
Cigital [7], the weaknesses can be eliminated by using the 61 rules classified according
to the Seven Pernicious Kingdoms [8] classification method proposed by Katrina
Tsipenyuk, Brian Chess, and Gary McGraw. The coding rule suggested by Cigital is
defined in XML form and can be used as an input in weakness analyzers and other
programs. Industries prone to fatal mistakes due to software defects, such as the
airplane and car industry, have implemented coding rules, such as JSF and MISRA
Coding Rule [9], to contribute towards high quality software development.

2.2 Source Code Weakness Analyzer
According to a report by Gartner [2], 75% of recent software security incidents were

caused by applications containing vulnerable points; thus, the effective detection and
elimination of possible weaknesses in a program from the application development
stage has become a very important issue.

The source code weakness analyzer is a tool which has been developed to
automatically examine the weaknesses within source code after it has been created by
a programmer. Programmers aspire to have weaknesses within their programs to be
entirely eliminated. However, it is difficult to acquire expert knowledge about
weaknesses and it is difficult to recognize how to alter such weaknesses. Therefore,
there is a need for a tool capable of automatically analyzing weaknesses at the source
code level. There exists a suitable weakness analysis method depending on each

weakness and these are broadly classified into static and dynamic analysis methods.
The static method uses technology that does not require the subject program to run and
uses methods such as token, AST (Abstract Syntax Tree), CGF (Control Flow Graph),
DFG (Data Flow Graph). The dynamic method uses technology that performs a level-
by-level analysis of programs while they are running and it uses certain codes that can
either be used during execution time or by library mapping to carry out the analysis.

MOPS (MOdel Checking Programs for Security properties) [10] is a model testing
machine developed at the University of California, Berkeley. MOPS defines the
properties of security weakness factors, and has been standardized using limited
automata. Accordingly, weaknesses that have been modeled can all be examined at low
analysis costs. However, since it does not analyze the flow of data, there is a limit to
the weaknesses that can be analyzed. Safe-Secure C/C++ by Plum Hall [11] is a type
of compiler that has combined a compiler with a soft-ware analysis tool. Safe-Secure
C/C++ only focuses on eliminating buffer overflow. Execution programs created using
this software are capable of eliminating buffer over-flows 100% and have less than a
5% decrease in function compared to execution files created by ordinary compilers.
Coverity’s Coverity SAVE [12], is a static analysis tool for source codes. Coverity
SAVE shows all weaknesses discovered in codes as a list. Each list includes details on
the location of and reason for weaknesses discovered within each list. Fortify Static
Code Analyzer (SCA) [13] is a weakness detection tool. Fortify SCA supports C/C++,
Java, and other languages, and uses both static and dynamic analysis to detect
weaknesses in source codes. The detected weaknesses are given to the user along with
statistical data. Compass [14] is an open source static analysis tool for C/C++ based on
ROSE [15]. Rule-based Compass uses the source-to-source framework ROSE for
source code transformations, allowing users to modify the domain-specific rules sets of
this tool. Sparrow (fasoo.com) [16] is a tool that carries out a semantic analysis to detect
buffer overruns, memory leakage, and other critical memory errors and is an automatic
program error analyzer based on semantic analysis. It provides information on the
analysis time, error path, and memory status of the analyzed errors.

2.3 Smart Cross Platform
Existing smart phone content development environments require different object

codes to be presented for each target device or platform. The languages that can be
developed also vary depending on the platforms. The Smart Cross Platform [17] was
developed to support platform-independent downloading and executing application
programs in the various smart devices. In addition, the Smart Cross Platform supports
multiple programming languages by using the intermediate language named SIL, which
is designed to cover both procedural and object-oriented programming languages.
Currently, the platform supports C/C++, Objective C, and Java, which are the languages
most widely used by developers.

Fig. 1. System Configuration of the Smart Cross Platform
The Smart Cross Platform consists of three main parts: a compiler, assembler, and

virtual machine. It is designed as a hierarchal structure to minimize the burden of the
retargeting process. Fig. 1 shows a model of the Smart Cross Platform.

The SIL code is a result of the compilation process and is changed into smart
executable format (SEF) through an assembler. The smart virtual machine (SVM) then
runs the program after receiving the SEF. The SVM is composed of five major modules:
the SEF loader, stack-based interpreter, SVM built-in libraries, native interfaces,
runtime environments, and runtime environments consisting of an exception handler,
memory management, and a thread scheduler [18]. The SVM is designed to easily add
debugging interfaces, profiling interfaces, etc. The system configuration of the SVM is
shown in Fig. 2.

 Fig. 2. System Configuration of the Smart Virtual Machine

The secure compiler and virtual machine with stack monitoring proposed in this
paper are extensions of the compiler and virtual machine of the Smart Cross Platform.

3 Secure Compiler & Virtual Machine for IoT Services
3.1 System Model

In current heterogeneous computing environments, such as the IoT, in which
everything is connected, it is difficult to apply conventional application development
methods and execution environments. Our research team is working on solving this
problem with the aim of producing high-quality/trustworthy IoT services. Our
technology provides three major features: i) the same developmental environment and
common runtime, ii) software weakness elimination methods and secure runtime
monitoring module, iii) performance enhancement of the low computing power for IoT
devices using cloud services and offloading techniques with a virtual machine. Fig. 3
shows the complete system model consisting of secure compilers and a virtual machine.

Fig. 3. Secure Development and Execution Model for IoT Services
In this paper, as a first step of this research effort, we propose a secure coding rule-

based compiler and virtual machine with secure runtime focused on stack monitoring.

3.2 Secure Compiler
The secure compiler was designed by adding a secure coding rule checker and a

static weakness analyzer to the compiler model of the Smart Cross Platform [19, 20].
In this study, the secure compiler comprises eight parts as can be seen in Fig. 4.

Fig. 4. Proposed Secure Compiler Model for C/C++ Languages

The secure compiler provides secure features to prevent software weaknesses in the

input program source code in C/C++. It was designed with six general compiler parts -
scanner (lexical analysis), parser (syntax analysis), SDT (syntax directed translation),
semantic analyzer, ICG (intermediate code generator), and optimizer – and two kinds
of secure parts: a secure coding rule checker and a static weakness analyzer. The
detailed information for each part is as follows.

The scanner, parser, and SDT modules can easily be grouped as a processor to
analyze the input C/C++ programs and generate an analyzed AST for the input
programs.

The semantic analyzer checks the process of collecting symbol information on the
AST level, to verify cases which are grammatically correct but semantically incorrect.
Moreover, it uses the AST and symbol table to carry out a semantic analysis of
statements and creates a semantic tree as a result. A semantic tree is a data structure to
which semantic information is added from an AST and is not only used for generating
the VM (virtual machine) code but also for analyzing software weaknesses.

The code generation module receives the semantic tree as an input after the analysis
is complete and generates a VM code which is semantically equal to the input program
in C/C++.

The secure coding rule checker is the module that detects the rule violations of the
input programs. The coding rules are defined by meta-language that was designed to
describe the secure policy of the target programming languages. The defined rules are
interpreted by the rule checker, which analyzes the violations using the input semantic
tree with interpreted rule information [21].

The static weakness analysis module analyzes the control flow and data flow of a
source program by using the symbol information and semantic tree generated by the
front end of the compiler. Some weaknesses are too complicated to allow precise
assessment by the rule checker. In that case, the rule checker generates too many false
alarms when targeting weaknesses. Weaknesses such as these require the use of a static
weakness analysis module with 1:1 mapping routines for specific weakness analysis.

The software weaknesses that are analyzed by the proposed compiler are collected
and categorized from the top-level weaknesses defined by CWE and OWASP (Open

Web Application Security Project) [22] for embedded systems, networks, the IoT, and
C/C++ programming languages.

The secure coding rules for IoT services are defined and categorized by IoT and
mobile application-specific weakness groups defined during previous research [21, 23].
The major weakness rules are listed in Table 1.

 Table 1. Secure Coding Rules for IoT Applications

3.3 Virtual Machine with Stack Monitoring

A stack overflow is the most typical vulnerability used by hackers to attack programs

and computer systems. Thus, the prevention of stack overflow attacks serves to
considerably enhance the reliability of a system [24, 25]. We aimed to implement
secure executing environments for IoT services by proposing a VM-based stack
protection technique using separated stack frames.

A general representation of the runtime stack configuration of programs is shown in
Fig. 5. The memory area is shared by multiple stack frames and a new stack frame is
created at every function calling. Each stack frame consists of an operand stack and the
function call information.

These stack structures can easily express the relationship of the invocation of the
functions; furthermore, they have advantages such as the passing of return values and
efficient memory usage. On the other hand, they have disadvantages such as the

Category Weakness Type
(No. sub category) Major Secure Coding Rule

Language
Independent

Code Quality(3) Do not reuse public identifiers
Input Validation(1) Sanitize untrusted data passed across a trust

boundary.
Security
Features(1)

Do not allow privileged blocks to leak
sensitive information across a trust
boundary

Language
Dependent

Class(3) Defensively copy private mutable class
members before returning their references

Time & States(2) Avoid deadlock by requesting and releasing
locks in the same order

Error Handling(2) Prevent exceptions while logging data
Libraries(4) Do not use vulnerable APIs

Do not use deprecated methods
Security
Features(4)

Do not use vulnerable Algorithms
Do not leak personal information

Resource Usage(7) Do not allow unprivileged resources
System Events(2) Must write the event handlers
Runtime
Environments(1)

Consider multiple vendor’s device
characteristics

exposure of sensitive information and unintended control jumps, should the stack
information be compromised by a hacker [26, 27].

 Fig 5. Conventional Stack Frame Structure
Previous research has led to the development of techniques for solving this problem

on the system level, such as return address encryption and stack guard [26, 28, 29].
However, these research results are not applicable to VM environments because of
extensive executing performance degradation.

 Fig. 6. Proposed Stack Frame Structure using Stack Monitor

In this work, we use the stack monitor on the VM to protect the stack frames and
reduce the loss of execution performance. A diagram of the proposed model including
a stack monitor is shown in Fig. 6.

Firstly, all stack frames are isolated by other frames. Thus, compromised
information at one stack frame does not affect other stack frames. Next, the return
address is managed by the stack monitor, which determines whether a change of return
address has occurred. Also, at this time, the stack monitor records the stack size on the
caller side to verify whether the caller’s stack frame has been tampered with.

Each stack frame was isolated from other stack frames as in the sandbox model used
for objects/applications in management techniques. Moreover, the main attack target as
return address will be duplicated on the stack monitor; thus, we can easily detect
whether the address value has been subject to tampering.

Details of the stack frame management techniques using a stack monitor are
presented in Table 2.

Table 2. Proposed Stack Frame Structure using Stack Monitor

1. Record the frame address to stack monitor when the stack frame is created, and

write the table pointer information of the stack monitor on the stack frame. This
stack frame address is cross referenced.

2. Create a new stack frame when the function is invoked, and the stack monitor
writes the stack frame size and stack top pointer of the caller.

3. Record the return address of the callee on the return address table of the stack
monitor.

4. At the return time of the called function, the stack monitor judges whether the
frame address is damaged by comparing the monitor pointer in the activation stack
frame and the frame pointer address of the stack monitor.

5. If the result is normal, the stack monitor compares the return address in the stack
frame and that of the monitor.

6. If the return address matches, the stack monitor inspects the stack size of the caller
by using the recorded information in the stack size table.

7. If the size is the same, the return value is copied by the stack monitor using the
stack top pointer table, and the activation stack frame is changed to the caller’s
stack frame and the callee’s stack frame is removed.

8. If problems occurred at steps 4,5,6, and 7 then the stack monitor regarded as the
stack has been compromised and exception handling is executed.

 This technique does not affect the other stacks, even if the stack frame is tainted by

the hacker's attacks. Also, it is impossible to jump to the point the hacker intended
attacking when a change of return address has occurred. Therefore, when the attack
involves an application in a virtual machine environment, the proposed method can
block sensitive data or system control from being obtained, and can handle exceptions
for applications where the problem occurs.

4 Experimental Results
4.1 Smart Cross Platform

In this section, we use the compiler we developed to experiment with the diagnosis
of weaknesses that may occur in mobile applications. We selected Fortify and
Compass/ROSE to compare the performance of the implemented compiler. These two
selected open source software testing tools can inspect the programs written in C/C++.
The secure coding rules for IoT applications used in the implemented compiler were
defined during previous research and in section 3.2.

Firstly, we determine the range of the weakness check for the implemented compiler
and selected tools. Table 3 lists the checkable weaknesses from the 47 weaknesses
released by the KISA (Korea Internet & Security Agency) and Ministry of the Interior
[30] using three tools: Fortify, Compass/ROSE, and the implemented secure compiler.
Fortify and Compass/ROSE are general software analysis tools; therefore, we selected
47 rules to ensure a reasonable comparison. The 47 weaknesses were selected because
they can be applied to IoT environments.

Table 3. Weakness Check Result for 47 Items

ID Fortify Compass
/ROSE

Proposed
Compiler ID Fortify Compass

/ROSE
Proposed
Compiler ID Fortify Compass/

ROSE
Proposed
Compiler

1 ○ ○ 17 33 ○
2 ○ ○ 18 34 ○ ○
3 ○ ○ 19 ○ 35 ○ ○
4 ○ ○ 20 ○ ○ 36 ○ ○
5 ○ ○ 21 ○ ○ 37 ○ ○ ○
6 ○ ○ 22 ○ ○ ○ 38 ○
7 ○ ○ 23 ○ ○ 39
8 ○ ○ ○ 24 ○ ○ 40 ○ ○ ○
9 ○ 25 ○ ○ 41

10 26 ○ ○ 42 ○ ○ ○
11 ○ ○ 27 ○ ○ 43 ○ ○ ○
12 ○ ○ 28 ○ ○ 44 ○ ○
13 ○ ○ 29 ○ ○ 45 ○ ○
14 ○ ○ ○ 30 ○ ○ 46 ○ ○
15 ○ ○ ○ 31 47 ○ ○ ○
16 32 ○ Total 37 9 38

Fortify has 37 items and Compass/ROSE has 9 items, as indicated in Table 3, and

the proposed compiler checks 38 items of the total 47 items. The implemented compiler
is able to cover all the different kinds of weaknesses checked by the two tools except
for ID 9 and ID 32.

In addition, obtaining a false positive with the tool that checks the weaknesses is also
a very important performance metric. For the 38 weaknesses that were checked by tools
used in the experiment, we used the test source programs that were selected from
SAMATE (Software Assurance Metrics And Tool Evaluation) [31], and each false
positive result is shown in Fig. 7. The experimental results show that the proposed
compiler obtained fewer false positive outcomes compared to the other tools, except
for ID 36. The checkable weakness for each of the tools is Fortify 59.4%,
Compass/ROSE 66.1%, proposed compiler 53.6% of the average false positives,
respectively. The experimental result of the analysis showed the compiler proposed in
this paper to be superior compared to the tools with which its performance is compared.

Fig. 7. False Positive Rate of Tested Analyzer (0 % item means the case cannot be examined.)

Next, to verify the efficiency of the stack monitoring, we used the SAMATE test

suits for stack-based overflow and modified them to run on the proposed VM. The
experimental results enabled us to confirm the ability of the exception handler to
perform satisfactorily during attacks. Furthermore, the proposed VM with stack
monitoring has 4~7% overhead compared with the original SVM [17, 18]. Test source
program categories and execution performance rates are listed in Table 4.

Table 4. Performance of Proposed Protection Technique

Test Category memcpy memmove socket fget memalloc
Original SVM 100.0% 100.0% 100.0% 100.0% 100.0%
Proposed VM

with Stack
Monitoring

104.0% 106.3% 107.5% 105.5% 106.5%

5 Conclusions and Further Research
This paper describes tools to develop and execute secure software for IoT services.

Today, the security schemes of most software rely extensively on complementary tools
such as firewalls and user authentication. However, the percentage of such tools
involved in software security violations accounted for only 25% of security breaches.
The other 75% of security violations occurred due to software code containing
weaknesses; thus, the most effective way of enhancing the level of security is to have
programmers write robust code from the start. Weaknesses in source codes can be
diagnosed by the weakness analysis tools that are currently available. However, it is
difficult to effectively eliminate weaknesses with this method because it requires the
repeated execution of weakness analysis through a separate analyzer after correcting
pre-detected weaknesses. The detection of bugs for IoT services relies mostly on classic
software test methodology and classic test automation tools. This methodology
separates the development process from the test process, serving as a factor that
complicates problem analysis and correcting errors in the beginning of the development
process.

An expanded compiler for weakness analysis and a virtual machine with stack
monitoring were proposed in this study to examine the weaknesses that can exist within
programs at the beginning of IoT application development and to monitor abnormal
behavior of service execution. In addition, we expect the proposed compiler to expand
the coverage of previous IoT service developmental platforms and reduce the cost of
developing secure services.

Next, the proposed VM-based stack protection technique isolates the stack frames
and monitors them using the stack monitor. In this way it is possible to block a hacker’s
attack aimed at overwriting the stack contents by unsanitized input values at the
function call to obtain sensitive data or control of the system. This approach does not
only enable the development of applications that are robust against external attacks, it
also reduces the huge cost associated with preventing problems anticipated at the
service operational stage.

In future, research on automating the addition of analysis modules to compilers will
be carried out. This requires the rules for secure coding to be standardized and research
on automatic reading and rules analysis written in the Meta language will be carried
out. In addition, there is a need to review the execution speed and the precision of the
analysis results for the proposed expanded compiler. And, as a runtime of the IoT
services, research on compaction of the VM, for example by minimizing the instruction
set, optimizing the interpreter, and a computation offloading method using cloud
services, are needed.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the Ministry of
Science, ICT and Future Planning (No.2013R1A2A2A01067205) and supported by a
Korea University Grant.

References
1. G. McGraw, Software Security: Building Security In, Addison-Wesley, 2006.
2. Theresa Lanowitz, Now Is the Time for Security at the Application Level, Gartner, 2005.
3. Viega, G. MaGraw, Software Security, How to Avoid Security Problems the Right Way,

Addison-Wesley, 2006.
4. B. Chess, J. West: Secure Programming with Static Analysis, Addison-Wesley, 2007.
5. Common Weakness Enumeration (CWE): A community-Developed Dictionary of Software

Weakness Types, http://cwe.mitre.org/.
6. SEI CERT Coding Standards:

https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standar
ds

7. Cigital, Cigital Java Security Rulepack: http://www.cigital.com/securitypack/ view/index.html
8. K. Tsipenyuk, B. Chess, G. McGraw, “Seven pernicious kingdoms: a taxonomy of software

security errors,” Security & Privacy, IEEE, pp.81-84, 2005.
9. MISRA C: http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
10. H. Chen, D. Wagner, “MOPS: an infrastructure for examining security properties of

software”, Proceedings of the 9th ACM Conference on Computer and Communications
Security, pp.235-244, 2002.

11. Plum Hall, Inc. Overview of Safe-Secure Project: Safe-Secure C/C++:
http://www.plumhall.com/SSCC_MP_071b.pdf, 2006.

12. Coverity SAVE: http://www.coverity.com/products/coverity-save/
13. Fortify Static Code Analyzer:

http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
14. Compass: http://rosecompiler.org/?page_id=16
15. ROSE compiler infrastructure:

http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
16. Sparrow:

http://www.fasoo.com/site/fasoo/sourcecodeanalysis/sparrow.do
17. Y.S. Lee, Y.S. Son, “A Study on the Smart Virtual Machine for Smart Devices”, Information

-an International Interdisciplinary Journal, Vol. 16, No. 2, pp.1465-1472, 2013.
18. Y.S. Lee, Y.S. Son, “A Study on the Smart Virtual Machine for Executing Virtual Machine

Codes on Smart Platforms”, International Journal of Smart Home, Vol. 6, No. 4, pp. 93-105,
2012.

19. Y. Son, Y.S. Lee, “Design and Implementation of an Objective-C Compiler for the Virtual
Machine on Smart Phone”, Communications in Computer and Information, Vol. 262, pp.52-
59, 2011.

20. Y.S Lee, Y. Son, “A Study on Verification and Analysis of Symbol Tables for Development
of the C++ Compiler,” International Journal of Multimedia and Ubiquitous Engineering,
Vol.7, No.4, pp.175-186, 2012.

21. Y.S. Son, S.M. Oh, “Design and Implementation of a Compiler with Secure Coding Rules
for Secure Mobile Applications”, International Journal of Security and Its Applications,
Vol.6, No.4, pp.201-206, 2012.

22. Open Web Application Security Project: https://www.owasp.org/index.php/Main_Page
23. Y. Son, I. Mun, S. Ko, S. Oh, “A Study on the Weakness Categorization for Mobile

Applications,” Korea Computer Congress 2012, Vol. 39, No. 1(A), pp.434-436, 2012.
24. R. Kumar, E. Kohler, M. Srivastava, “Harbor: software-based memory protection for sensor

nodes,” ACM Proceedings of the 6th international conference on Information processing in
sensor networks, pp. 340-349, 2007.

25. A. Averbuch, M. Kiperberg, N. J. Zaidenberg, “An efficient vm-based software protection,”
IEEE 5th International Conference on Network and System Security, pp. 121-128, 2011.

26. C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole, “Buffer Overflows: Attacks and Defenses
for the Vulnerability of the Decade,” DARPA Information Survivability Conference and
Exposition, Vol.2, pp.119-129, 2000.

27. R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, T. Walter, “Breaking the
memory secrecy assumption,” Proceedings of the 2nd European Workshop on System
Security, pp.1-8, 2009.

28. C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, H. Hinton, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks,” Usenix Security
Vol. 98, pp. 63-78, 1998.

29. P. Wagle, C. Cowan, “Stackguard: Simple stack smash protection for gcc,” Proceedings of
the GCC Developers Summit, pp. 243-255, 2003.

30. Secure Software Development Guides,
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMST
R_000000000012

31. Juliet Test Suite for C/C++, http://samate.nist.gov/SRD/testsuite.php

YangSun Lee

He received the B.S. degree from the Dept. of Computer Science, Dongguk University, Seoul, Korea, in 1985, and M.S. and

Ph.D. degrees from Dept. of Computer Engineering, Dongguk University, Seoul, Korea in 1987 and 2003, respectively. He

was a Manager of the Computer Center, Seokyeong University from 1996-2000, a Director of Korea Multimedia Society

from 2004-2005, a General Director of Korea Multimedia Society from 2005-2006 and a Vice President of Korea

Multimedia Society in 2009. Currently, he is a Professor of Dept. of Computer Engineering, Seokyeong University, Seoul,

Korea. His research areas include smart system, programming languages, and embedded systems.

Junho Jeong

Junho Jeong received the B.S. and M.S. degree in computer engineering from Dongguk University, Seoul, Korea in 2007 and

2009 respectively. He is a doctoral candidate in computer engineering at Dongguk University. His research interests include

in information security system, distributed processing system, distributed and parallel algorithms, and cloud security.

Yunsik Son

He received the B.S. degree from the Dept. of Computer Science, Dongguk University, Seoul, Korea, in 2004, and M.S. and

Ph.D. degrees from the Dept. of Computer Engineering, Dongguk University, Seoul, Korea in 2006 and 2009, respectively.

Currently, he is a Researcher of the Dept. of Computer Science and Engineering, Dongguk University, Seoul, Korea. Also,

he is a research professor of Det. of Brain and Cognitive Engineering, Korea University, Seoul, Korea. His research areas

include secure software, programming languages, compiler construction, mobile/embedded systems, and u-Healthcare.

HIGHLIGHTS:

- Secure software for developing secure/trustworthy services for IoT was proposed.

- A secure compiler used in the development phase to eliminating the weaknesses.

- A virtual machine used in the operating phase to watching the abnormal behaviors.

Fig. 1. System Configuration of the Smart Cross Platform

